张诚助理教授学术报告

发布时间:2025年04月28日 作者:   阅读次数:[]

题目: Strichartz estimates for orthonormal systems on compact manifolds

报告人:清华大学张诚助理教授

报告时间:2025年4月29日10:00-11:30

报告地点:数理楼245教室

报告摘要: We establish new Strichartz estimates for orthonormal systems on compact Riemannian manifolds in the case of wave, Klein-Gordon and fractional Schrödinger equations. Our results generalize the classical (single-function) Strichartz estimates on compact manifolds by Kapitanski, Burq-Gérard-Tzvetkov, Dinh, and extend the Euclidean orthonormal version by Frank-Lewin-Lieb-Seiringer, Frank-Sabin, Bez-Lee-Nakamura. On the flat torus, our new results for the Schrödinger equation cover prior work of Nakamura, which exploits the dispersive estimate of Kenig-Ponce-Vega. We achieve sharp results on compact manifolds by combining the frequency localized dispersive estimates for small time intervals with the duality principle due to Frank-Sabin. We construct examples to show these results can be saturated on the sphere, and we can improve them on the flat torus by establishing new decoupling inequalities for certain non-smooth hypersurfaces. As an application, we obtain the well-posedness of infinite systems of dispersive equations with Hartree-type nonlinearity.

报告人简介:张诚,现为清华大学数学中心助理教授,博士毕业于约翰霍普金斯大学,研究方向是调和分析,主要研究流形上的特征值和特征函数估计及其在偏微分方程中的应用。相关成果发表在Camb. J. Math.,Comm. Math. Phys.,Anal. PDE, Adv. Math.等国际高水平杂志。



打印】【收藏】 【关闭