Quantitative propagation of smallness in the plane and 1D spectral estimates

发布时间:2024年12月31日 作者:王明   阅读次数:[]

报告题目:Quantitative propagation of smallness in the plane and 1D spectral estimates

报告人:王允磊(博士)法国波尔多大学

报告时间:2025年1月2日11:00—12:00

报告地点:数统院一楼135报告厅


报告摘要:We investigate the connection between the propagation of smallness in two dimensions and one-dimensional spectral estimates. The propagation of smallness in the plane obtained by Y. Zhu, reveals how the value of solutions in a small region extends to a larger domain. By revisiting Zhu’s proof, we obtain a quantitative version that includes an explicit dependence on key parameters. This refinement enables us to establish spectral inequalities for one-dimensional Schrödinger operators.

报告人简介:王允磊,波尔多数学研究所分析组的三年级博士生,导师是菲利普·雅明(Philippe Jaming)。主要研究方向是偏微分方程的分析,特别是关于薛定谔算子的谱不等式、非调和三角多项式及其在热方程控制理论和色散方程可观性方面的应用。此外,对微局部分析和半经典分析也抱有浓厚兴趣。目前已在ESAIM: COCV,Journal of Spectral Theory,Evol. Equ. Control Theory等期刊发表论文多篇。



打印】【收藏】 【关闭