报告题目:Mean-field stochastic linear quadratic control problem with random coefficients
报告人: 熊捷(南方科技大学)
时间:2024年6月15日(星期六)10:00- 12:00
地点:数学与统计学院145
报告摘要:
In this talk, we first prove that the mean-field stochastic linear quadratic (MFSLQ) control problem with random coefficients has a unique optimal control and derive a preliminary stochastic maximum principle to characterize this optimal control by an optimality system. However, because of the term of the form $\mathbb{E}[A(\cdot)X(\cdot)] $ in the adjoint equation, which cannot be represented in the form $\mathbb{E}[A(\cdot)]\mathbb{E} [X(\cdot)] $, we cannot solve this optimality system explicitly. To this end, we decompose the MFSLQ control problem into two constrained SLQ control problems without the mean-field terms. These SLQ control problems can be solved explicitly by an extended LaGrange multiplier method. This talk is based on a joint paper with Wen Xu.
报告人简介:
熊捷教授1983年本科毕业于北京大学,1992年获得美国北卡罗来纳大学教堂山分校博士学位。1993年加入美国田纳西大学数学系,1999年晋升为副教授并获终身教职;2004年晋升为教授;2012年受邀加盟澳门大学,任终身教授,2017年加盟南方科技大学数学系,任讲席教授。
熊捷教授研究领域包括随机微分方程、马氏过程、极限理论、随机分析、数理金融等。已在Springer、IMS Monograph、牛津大学出版社和世界科学出版社出版专著4本,在Annals of Probability、Probability Theory and Related Fields等世界一流杂志发表学术论文100余篇。