报告题目:Nodal sets of eigenfunctions in quasiconvex Lipschitz domains
报告人:诸葛金平副研究员(中科院晨兴数学中心)
报告时间:2023年6月30日上午10点00分-12点00分
报告地点:数理楼135
报告摘要:Estimating the size of the nodal sets for the eigenfunctions of elliptic operators is a classical unique continuation problem, which has had several breakthroughs recently due to A. Logunov’s work. In this talk, I will present our recent work on the estimate of nodal sets in quasiconvex Lipschitz domains which generalizes the corresponding result in C^1 domains by Logunov-Malinnikova-Nadirashvili-Nazarov (GAFA, 2021). The quasiconvex Lipschitz domains is a unified class of Lipschitz domains that contains both C^1 and convex domains. Particularly, our result is new and sharp for Laplace operator in convex domains. This is a joint work with Jiuyi Zhu.
报告人简介:诸葛金平,现任中科院数学所/晨兴数学中心副研究员,国家级青年人才。本科毕业于中南大学,博士毕业于美国肯塔基大学数学系,曾任职芝加哥大学数学系的Dickson Instructor,主要研究领域为偏微分方程的均匀化理论,在CPAM, JEMS, ARMA等期刊发表论文10余篇。