Nodal sets of eigenfunctions in quasiconvex Lipschitz domains

发布时间:2023年06月27日 作者:   阅读次数:[]

报告题目:Nodal sets of eigenfunctions in quasiconvex Lipschitz domains




报告摘要:Estimating the size of the nodal sets for the eigenfunctions of elliptic operators is a classical unique continuation problem, which has had several breakthroughs recently due to A. Logunov’s work. In this talk, I will present our recent work on the estimate of nodal sets in quasiconvex Lipschitz domains which generalizes the corresponding result in C^1 domains by Logunov-Malinnikova-Nadirashvili-Nazarov (GAFA, 2021). The quasiconvex Lipschitz domains is a unified class of Lipschitz domains that contains both C^1 and convex domains. Particularly, our result is new and sharp for Laplace operator in convex domains. This is a joint work with Jiuyi Zhu.

报告人简介:诸葛金平,现任中科院数学所/晨兴数学中心副研究员,国家级青年人才。本科毕业于中南大学,博士毕业于美国肯塔基大学数学系,曾任职芝加哥大学数学系的Dickson Instructor,主要研究领域为偏微分方程的均匀化理论,在CPAM, JEMS, ARMA期刊发表论文10余篇

打印】【收藏】 【关闭