题目:Noncommutative weak $(1,1)$ estimate of Dirichlet mean on unbounded Vilenkin system
报告人:赵甜甜博士后
报告时间:2025年5月13日16:00-17:00
报告地点:235
报告摘要:Let $\mathcal{R}$ be the hyperfinite $\mathrm{II}_1$ factor, and let $(\mathcal{S}_n(f))_{n\geq1}$ be the partial sums of the noncommutative Vilenkin-Fourier series associated with an unbounded Vilenkin group. Then, for every $f \in L_p(\mathcal{R})$, there exist universal constants $c, c_p>0$ such that
\begin{equation*}
\|\mathcal{S}_n(f)\|_{L_{1,\infty}(\mathcal{R})} \leq c\|f\|_{L_1(\mathcal{R})},\quad \forall n\in \mathbb{N},p=1
\end{equation*}
and
$$\|\mathcal{S}_n(f)\|_{L_p(\mathcal{R})} \leq c_p\|f\|_{L_p(\mathcal{R})},\quad \forall n\in \mathbb{N}, 1<p<\infty.$$
The transference argument enables one to reduce problems from noncommutative setting to operator-valued setting. To prove the operator-valued results,
We establish a modified form of the noncommutative Calder\'{o}n-Zygmund decomposition for martingale filtrations in von Neumann algebras established by Cadilhac, Conde-Alonso and Parcet. We improve the strong $(p,p)$-type results established by Dodds, Ferleger, Pagter and Sukochev and obtain the weak-type estimate.
报告人简介:赵甜甜,哈尔滨工业大学博士后,合作导师王斯萌教授,研究方向为泛函分析,非交换分析。