刘勇教授学术报告

发布时间:2019年06月11日 作者:桂长峰   消息来源:    阅读次数:[]

报告题目: Saddle solution of the Allen-Cahn equation in dimension 8
报告人: 刘勇 中国科学技术大学教授
报告时间: 2019年6月14日上午09:30-11:30
报告地点: 数学与统计学院145报告厅
Abstract:The theory of Allen-Cahn equation and minimal surfaces are deeply connected. The famous De Giorgi conjecture about the classification of monotone solutions of Allen-Cahn equation is a parallel version of the Bernstein conjecture about minimal graphs. Another important result in minimal surface theory states that Simons' cone is area minimizing in dimension 8. A corresponding conjecture for the Allen-Cahn equation is that the saddle solution is stable (even energy minimizing) in dimension 8. In this talk, we discuss several qualitative properties of the saddle solution and show that the saddle solution is indeed stable in dimension 8.
报告人简介: 刘勇, 中国科学技术大学教授, 硕博士期间师从北京大学蒋美跃教授, 博士后合作导师为智利大学的Michal Kowalczyk教授, 主要合作者为德州大学圣安东尼奥分校的桂长峰教授, 英属哥伦比亚大学的魏军城教授等, 主要研究方向为椭圆型偏微分方程, 发表论文二十多篇, 其中多篇在微分方程的顶级学术期刊发表, 如Advances in Mathematics, Journey of Functional Analysis, Ann. Inst. H. Poincare Anal. Non Lineaire, J. Math. Pures Appl., Analysis and PDEs, SIAM Journal of Mathematical Analysis, Comm. Partial Differential Equations 等.



打印】【收藏】 【关闭