陈安岳教授学术报告

发布时间:2018年11月15日 作者:李俊平   消息来源:    阅读次数:[]
 

 报告题目:Decay Properties of Non-Linear Markov Branching Processes

报告人:陈安岳 南方科技大学

报告时间:20181116日下午2:305:30

报告地点:数学楼145小报告厅

报告摘要:The non-linear branching process is a family of interacting branching models which is indexed by a parameter.  In this talk, we shall address the decay properties, which are less known until now, of such branching models. We first show that the corresponding decay parameter, viewed as a function of , is monotonic with the parameter . We then establish a closed form for the invariant measure related to the decay parameter. For a special class of such branching processes, the so-called quadratic branching process, much more properties are provided. In particular, we show that the decay parameter of the quadratic branching process is equal to the first eigenvalue of a second order differential operator associated with the PDE, to which the generating function of the transition probability satisfies. Moreover, both the upper and lower bounds of the decay parameter are given explicitly by means of the classical Hardy's inequality.

报告人简介:陈安岳教授,1970年毕业于北京大学数学系,1978年考入中南铁道学院攻读硕士学位,师从著名数学家侯振挺教授,毕业后在北方交大任教,1985年再列候教授门墙,攻读博士研究生。1988年底,陈教授赴英国,先后任教于爱丁堡大学、诺丁汉、香港大学、格林威治大学,现为英国利物浦大学首席教授。陈安岳教授对于随机过程特别是Q过程有精深的研究,他首先提出的禁止概率法,是对Q过程构造论的突破性发展,在国外工作期间,他又对马氏过程的发展做出了突出贡献,成为该领域中十分活跃的专家。



打印】【收藏】 【关闭