陈昕 学术报告

发布时间:2018年11月02日 作者:鲍建海   消息来源:    阅读次数:[]

题目: Random conductance models with stable-like jumps: heat kernel estimates and Harnack inequalities

报告人: 陈昕 上海交通大学

时间2018119 15:00-17:00

地点:数理楼小学术报告厅

Abstract: We establish two-sided heat kernel estimates for random conductance models with non-uniformly elliptic (possibly degenerate) stable-like jumps on graphs. These are long range counterparts of well known two-sided Gaussian heat kernel estimates by M.T. Barlow for nearest neighbor (short range) random walks on the supercritical percolation cluster. Unlike the cases for nearest neighbor conductance models, the idea through parabolic Harnack inequalities does not work, since even elliptic Harnack inequalities do not hold in the present setting. As an application, we establish the local limit theorem for the models.

陈昕,本科,硕士研究生、博士研究生先后毕业于北京科技大学、北京师范大学、Warwick大学,硕士研究生导师为王凤雨教授,博士研究生导师为李雪梅教授,曾在葡萄牙里斯本大学做博士后研究,导师为Ana Bela Cruzeiro. 目前的研究兴趣主要集中于随机分析中的若干问题,包括泛函不等式、无穷空间上的随机分析、跳过程的位势理论、随机方法在几何中的应用等,先后在  Probab. Theory Related Fields J. Funct. Anal. Stochastic Process. Appl. Electron. J. Probab. Bull. Lond. Math. Soc. Comm. Math. Phys.等期刊发表论文20余篇.

 



上一篇:吴波学术报告

打印】【收藏】 【关闭