长沙2018生物数学研讨会

发布时间:2018年05月09日 作者:唐颖   消息来源:业务办    阅读次数:[]

长沙2018生物数学研讨会 一、会议报到时间:5月10日 二、会议报到地点:福盛源大酒店 三、会议报告时间:5月11日-12日 四、会议报告地点:中南大学数学与统计学院145号小报告厅 五、 特邀报告专家: 林支桂,扬州大学数学学院教授、博士生导师,江苏工业与应用数学学会常务理事、中国数学会生物数学学会常委理事、《生物数学学报》和《International Journal of Biomathematics 》杂志编委;出版专著一部,发表论文100余篇,主持国家自然科学基金5项,5篇论文被列为ESI高被引论文。 王其如,中山大学数学学院教授、博士生导师,中山大学逸仙学院副院长,中山大学复杂系统研究中心主任,广东省数学会秘书长;发表学术论文100余篇,主持国家自然科学基金3项。 袁沅,加拿大纽芬兰纪念大学数学与统计系教授,博士生导师,山西大学“百人计划”特聘教授;发表高水平学术论文80余篇,并兼任多个国际期刊编委、特邀编辑等。 王金良,黑龙江大学数学科学学院教授,硕士生导师,黑龙江省数学会和哈尔滨市数学会理事;哈尔滨工业大学与日本静冈大学联合培养博士;发表论文50余篇,4篇论文被列为ESI高被引论文;主持国家自然科学基金2项。 邹幸福,加拿大西安大略大学应用数学系终身教授,博士生导师,中南大学“百人计划”特聘教授;发表论文140多篇,出版外文学术专著8部;主持加拿大各类项目19项,其中主持加拿大自然科学与工程研究基金会探索项目5项。 黄立宏,长沙理工大学二级教授,博士生导师,国家教学名师,享受国务院特殊津贴专家,现任长沙理工大学副校长;发表SCI论文两百余篇,出版专著3部;先后主持承担国家自然科学基金6项,国家对外交流与合作项目3项;获得教育部科技进步奖1项、机械工业部科技进步奖2项,湖南省科技进步奖1项。 王玮明,淮阴师范学院“翔宇学者”,数学科学学院教授,淮安市传染病防控和预警重点实验室主任,中国生物数学会常务理事。2017年入选淮安市领军人才;发表论文50余篇,获得甘肃省科技进步和浙江省自然科学三等奖各1项。主持承担国家自然科学基金2项。 董岳平,2014年博士毕业于日本静冈大学,其后在日本东京大学、九州大学和青山学院大学从事博士后研究工作,现在华中师范大学任教;先后在J Theor Biol,Nonlinear Anal RWA,Appl Math Comput,DCDS-B等学术期刊发表多篇高质量学术论文。 六、会议报告安排 报告主持人:戴斌祥 1、 报告题目:生态学中的若干数学模型 报告人:扬州大学博士生导师林支桂教授 报告时间:2018年5月11日上午8点10分-10点 报告地点:数学楼145小报告厅 报告摘要:主要介绍7个生态学模型及其数学结果。首先介绍经典的生态模型,如Malthus模型、Logistic增长模型等;接着给出种群入侵模型和有关自由边界问题的数学结果;然后提出简化的SIS传染病模型,讨论其扩散的边沿;最后介绍禽流感模型及其存在的数学问题。 2、报告题目:一类带有非局部条件的Hilfer分数阶发展方程适度解的存在性和唯一性 报告人:中山大学王其如教授 报告时间:2018年5月11日上午10点10分-12点 报告地点:数学楼145小报告厅 报告摘要:Hilfer分数阶导数也被称为广义的Riemann-Liouville分数阶导数,目前关于Hilfer分数阶微分方程的研究还比较少. 本报告通过利用不动点定理和非紧性测度方法, 在相关半群是紧或者非紧的情况下, 我们建立了几种新的准则来保证一类带有非局部条件的Hilfer分数阶发展方程适度解的存在性和唯一性. 报告主持人:周英告 3、报告题目:A stage-structured model for the biocontrol of sea lice 报告人:加拿大纽芬兰纪念大学袁沅教授 报告时间:2018年5月11日下午2点10分-4点 报告地点:数学楼145小报告厅 报告摘要:Treatment of sea lice has become one of the top priorities in aquaculture research, due to their responsibility for most of the disease outbreaks on salmon farms and causing enormous monetary loss. In this talk, we propose a mathematical model for biological control of sea lice by introduction of its natural predators “cleaner fish”. Using dynamical approaches, we? address? the threshold dynamics with respect to the adult reproduction number? for sea lice $\mathcal{R}_s$ and? the net reproductive number of mathcal{R}_s>1$ and $\mathcal{R}_f1$ and $\mathcal{R}_f>1$. We discuses the local stability of the positive equilibrium point and investigate the Hopf bifurcation. Numerical simulations are provided and case study is given. 4、报告题目: Dynamics and profiles of a PDE Cholera model with distinct dispersal rates 报告人:黑龙江大学王金良教授 报告时间:2018年5月11日下午4点10分-6点 报告地点:数学楼145小报告厅 报告摘要:Spatial heterogeneity plays an important role in spread of infectious diseases, and hence, motivates and advocates diffusive models for disease dynamics. By analyzing a diffusive Cholera model with the bilinear incidence infection mechanism, heterogeneous parameters and distinct dispersal rates for the susceptible and infected hosts, we have investigated the asymptotical profiles of the endemic steady state as the dispersal rate of the susceptible or infected hosts approaches zero. Some arguments, such as, existence of global solution, uniform bounded of solution, asymptotic smoothness of semiflow andexistence of global attractor are also addressed. We then identify the basic reproduction number R0 for the model and prove its threshold role: if R01, the solution of the model is uniformly persistent and there exists a positive steady state. Finally, we demonstrate some biological implications on the mobility of hosts and the spatial heterogeneity. 报告主持人:陈海波 5、报告题目:Modeling the role of white-tailed deer in geographic spread of the black-legged tick Ixodes scapularis by a spatially nonlocal model. 报告人:加拿大西安大略大学邹幸福教授 报告时间:2018年5月12日上午8点10分-10点 报告地点:数学楼145小报告厅 报告摘要:Lyme disease is transmitted via blacklegged ticks,? the spatial spread of which is believed to be primarily via transport on white-tailed? deer. In this talk, I will?present a mathematical model to describe the spatial spread of blacklegged ticks due to deer dispersal. The model turns out to be a system of differential equations with a spatially non-local term accounting for the phenomenon thata questing female adult tick that attaches to a deer at one location maylater drop to the ground, fully fed, at another location. After justifying the well-posedness of the model? and? analyzing the stability of its steady states, we will explore the existence of traveling wave fronts connecting the extinction equilibriumwith the positive equilibrium for the system. We derive an algebraic equation that determines a critical value $c^*$? which turns out to be the minimum wave speed and the actual spread speed of the tick population. We then present some numerical simulation results to demonstrate the above results. We also explore the dependence of $c^*$ on the dispersion rate of the white tailed deer, by which one may evaluate the role of the deer's dispersion in the geographical spread of the ticks. This is a joint work with Stephen Gourley and Xiulan Lai et al.? 6、报告题目:右端不连续微分方程理论及其在生态学中的应用研究简介 报告人:长沙理工大学博士生导师黄立宏教授 报告时间:2018年5月12日上午10点10分-10点 报告地点:数学楼145小报告厅 报告摘要:在这个报告中,我们首先简要介绍右端不连续微分方程的研究背景、历史与现状,然后介绍右端不连续微分方程在生态系统建模中的一些应用例子,最后介绍我们近期对一个具有不连续功能反应的食饵捕食模型研究所获得的一些新结果,包括各类平衡点的稳定性与吸引性,解的收敛性,极限环的存在性、唯一性与全局有限时间稳定性,异宿轨的存在性等。 报告主持人:邹幸福 7、报告题目:空间传染病模型的斑图形成和选择问题 报告人:淮阴师范学院王玮明教授 报告时间:2018年5月12日下午2点10分-4点 报告地点:数学楼145小报告厅 报告摘要:主要介绍我们团队近十年在空间传染病模型研究上的一些成果,特别是介绍利用多重标度分析法研究空间传染病模型在Turing分支处的振幅方程以确定斑图类型及斑图选择问题。 8、报告题目:Delayed feedback induced complex dynamics in an Escherichia coli and Tetrahymena system 报告人:华中师范大学董岳平博士 报告时间:2018年5月12日下午4点10分-6点 报告地点:数学楼145小报告厅 报告摘要:Abundances of bacterial species such as Escherichia coli in a given environment are partly regulated by predation by protozoa species. Interactions among prey and predator species are not simple since a prey species has acquired defense mechanism against predation. In this talk, we develop a mathematical model to investigate the interaction between Shiga-toxin producing Escherichia coli and Tetrahymena with delayed feedback controls by production of Shiga-toxin and recruitment of neutrophils. By applying the quasi steady state approximation, the proposed model can be reduced to a Lotka-Volterra (LV) predator-prey type system with two discrete delays. By investigating the distributions of the roots of the characteristic equation, the local stability as well as Hopf-bifurcation are well studied. We provide a clear classification framework to detect the possibility of Hopf-bifurcation when two delays are present. Numerical simulations are carried out to verify the analytical results. Our findings reveal that the instability regions of coexistence equilibrium in two delay parameters plane always enlarge as the increase of negative feedback control coefficients, and especially the feedback controls on Tetrahymena population play a dominant role in the destabilization of coexistence equilibrium. Besides, we observe some interesting phenomena such as peak-adding bifurcation, quasi-periodic oscillation and chaos.



打印】【收藏】 【关闭