宋亮教授学术报告

发布时间:2017年12月05日 作者:唐颖   消息来源:业务办    阅读次数:[]

学术报告:Maximal function characterizations for Hardy spaces associated to nonnegative self-adjoint operators on spaces of homogeneous type

报告人: 宋亮教授 中山大学

报告时间: 2017年12月7日(星期四)上午10:30开始

报告地点:数学院一楼小报告厅

摘要:Let $X$ be a metric measure space with a doubling measure and $L$ be a nonnegative self-adjoint operator acting on $L^2(X)$. Assume that $L$ generates an analytic semigroup $e^{-tL}$ whose kernels $p_t(x,y)$ satisfy Gaussian upper bounds but without any assumptions on the regularity of space variables $x$ and $y$.In this article we give an atomic decomposition for the Hardy spaces $ H^p_{L,max}(X)$ in terms of the nontangential maximal function associated with the heat semigroup of $L$, and hence we establish characterizations of Hardy spaces associated to an operator $L$, via an atomic decomposition or the nontangential maximal function.

We also obtain an equivalence of $ H^p_{L, max}(X)$ in terms of the radial maximal function. This is a joint work with Prof. Lixin Yan.

报告人简介:宋亮,中山大学教授,博士生导师,2016年国家优秀青年基金获得者。主要研究与微分算子相联系的调和分析理论以及非光滑区域上均匀化理论(Homogenization)。在Journal of Functional Analysis,Advance in Math., Math. Z. ,J. Anal. Math.等国际数学杂志上发表论文20余篇。



打印】【收藏】 【关闭